EFI Communication Protocol

By: Sandy Ganz
Created 	: 04/27/96
Last Update	: � DATE * MERGEFORMAT �
05/05/96
�
�
� INDEX \e "	" \h "A" \c "2" �
�� TOC \o "1-3" �
Introduction	� GOTOBUTTON _Toc355890377 � PAGEREF _Toc355890377 �
3
��
Common Data Structures	� GOTOBUTTON _Toc355890378 � PAGEREF _Toc355890378 �
4
��
Big and Little Endians	� GOTOBUTTON _Toc355890379 � PAGEREF _Toc355890379 �
5
��
Protocol Data Formats	� GOTOBUTTON _Toc355890380 � PAGEREF _Toc355890380 �
6
��
Single Line Data	� GOTOBUTTON _Toc355890381 � PAGEREF _Toc355890381 �
6
��
Error Data and Status	� GOTOBUTTON _Toc355890382 � PAGEREF _Toc355890382 �
6
��
Table Data	� GOTOBUTTON _Toc355890383 � PAGEREF _Toc355890383 �
6
��
Binary Data	� GOTOBUTTON _Toc355890384 � PAGEREF _Toc355890384 �
6
��
EFI Hardware	� GOTOBUTTON _Toc355890385 � PAGEREF _Toc355890385 �
8
��
Commands	� GOTOBUTTON _Toc355890386 � PAGEREF _Toc355890386 �
9
��
! - Attention	� GOTOBUTTON _Toc355890387 � PAGEREF _Toc355890387 �
10
��
GetRes	� GOTOBUTTON _Toc355890388 � PAGEREF _Toc355890388 �
11
��
GetTable [Resource ID]	� GOTOBUTTON _Toc355890389 � PAGEREF _Toc355890389 �
12
��
GetData ResID	� GOTOBUTTON _Toc355890390 � PAGEREF _Toc355890390 �
13
��
SetData ResID	� GOTOBUTTON _Toc355890391 � PAGEREF _Toc355890391 �
14
��
Halt	� GOTOBUTTON _Toc355890392 � PAGEREF _Toc355890392 �
15
��
Monitor	� GOTOBUTTON _Toc355890393 � PAGEREF _Toc355890393 �
16
��
Alert	� GOTOBUTTON _Toc355890394 � PAGEREF _Toc355890394 �
17
��
Reset	� GOTOBUTTON _Toc355890395 � PAGEREF _Toc355890395 �
18
��
Resume	� GOTOBUTTON _Toc355890396 � PAGEREF _Toc355890396 �
19
��
LoadFlash	� GOTOBUTTON _Toc355890397 � PAGEREF _Toc355890397 �
20
��
Error Codes	� GOTOBUTTON _Toc355890398 � PAGEREF _Toc355890398 �
21
��
Appendix	� GOTOBUTTON _Toc355890399 � PAGEREF _Toc355890399 �
22
��
Resource Table Objects	� GOTOBUTTON _Toc355890400 � PAGEREF _Toc355890400 �
23
��
Data Types	� GOTOBUTTON _Toc355890401 � PAGEREF _Toc355890401 �
23
��
Access Types	� GOTOBUTTON _Toc355890402 � PAGEREF _Toc355890402 �
23
��
Location Types	� GOTOBUTTON _Toc355890403 � PAGEREF _Toc355890403 �
23
��
States	� GOTOBUTTON _Toc355890404 � PAGEREF _Toc355890404 �
23
��
�
�Introduction
This is an attempt to create a specification that will describe the communication protocol for a typical Electronic Fuel Injection system. Some assumptions are made about the system, but for the most part the protocol could be used with any type of control application where an embedded controller needs to communicate to the outside world. The main concept for this protocol is a very simple text based interface where most interaction to the EFI controller is done via interaction with a Resource Table. This table resided on the EFI controller, and maintains the specifications, states, values of specific items on the EFI controller. In addition as more features and options become available to the EFI controller, the table need only to be expanded, without any additional protocol changes. In addition, the PC connected to the EFI controller can dynamically determine the needed resources that are available.

�Common Data Structures
This section outlines some common and simple data structures that ‘may’ be used to implement the EFI protocol. These are only suggestions, and give a method that would make the implementation simpler. To start with the main interface to all data and resources are accessed through a Resource Table. A brief discussion on some common types of data is needed before we create the actual table.

typedef unsigned char	Byte;
typedef short		lnt16;
typedef long		Int32;
typedef unsigned short	Uint16;
typedef unsigned long	Uint32;

These common typedef will be used as the basis for determining the actual width of common datatype, and elimination any confusion, with the exception of the byte ordering problems. Byte ordering between Motorola (Little Endian), and Intel (Big Endian)architectures differ in the way that the data is stored. For the most part this will not be an issue, as data is typically moved across the interface in ASCII format. Their is however some exceptions to this, and it will be up to the program that interprets these data items on how to convert across the two formats.

This table is defined on the EFI controller, as a simple ‘C’ struct.

#define RES_NAME_SIZE	17

typedef struct Resource{
	char		Name[RES_NAME_SIZE];
	char		Access;
	Byte		Location;
	Uint32	Elements;
	Byte		Type;
	Byte		State;
	/* Other data items that may be useful */
}ResEntry;

This structure is one entry into the Resource Table, where the EFI internal software has this table constructed into an array of resource elements.

For example in the EFI program, you might find the declaration that looks something like this -

.
.
.
#define RESOURCE_CNT	110

ResEntry ResTable[RESOURCE_CNT];	/* filled in at run time */

OR

static ResEntry ResTable[] = {
	{“LASTERROR”, ‘R’, ‘R’, 1, 1, 0},
	{“REVISION”, ‘R’, ‘R’, 1, 1, 1},
	.
	.
	.
	NULL
};
.
.
.
At this point we have not discussed the meaning of the entries of the table. This will be done in a later section. A few things to notice, is we can create the table as a static object. This should be fine in most cases, unless the compiler will place this data segment in ROM memory. See you compilers manuals for information on static data objects, and initialization of data structures.

Big and Little Endians
In most cases the data that comes from the EFI controller will be ASCII by nature, i.e., human readable. In some instances this is not desired. Think about the case where we want to monitor many engine functions, RPM, Injector Timing, Timing, etc. If we had to convert them all to ASCII, and then send the large data message we could have a problem of overtaxing the EFI controller. It would be much more efficient to just send the data in packed form, and let the PC handle the unpacking of the data. This is where the problem arises. Motorola stores integers (16, 32 bit) in a different format then Intel (PC). If the EFI were to send a 4 byte integer to the PC via the RS232 link, the PC would be getting the 4 bytes in Motorola format, which would not represent the same number. As an option the EFI could reformat the multi-byte values before sending, this would not take that long, and this option may be added. For now, the Motorola format will have to be converted to Intel on the PC size. Several simple function will do this. Floating point values are TBD.

�MSB���LSB��16 Bit Integer Intel�0x34�0x12����32 Bit Integer Intel�0x78�0x56�0x34�0x12��16 Bit Integer Motorola�0x12�0x34����32 Bit Integer Motorola�0x12�0x34�0x56�0x78��Table indicates the HEX value of 0x1234 for the 16bit, and 0x12345678 for the 32bit number
�
Protocol Data Formats
The formats for exchanging data to and from the EFI controller has only a few simple formats. These include a single line of returned data, an error message, a table of data, and binary data. An overview of each will be given. Most commands and responses are terminated by a new line string. This new line can be set to be a carriage return (0x0d) or a carriage return/line (0x0d, 0x0a) feed pair. In all cases where this option exists, this will be shown by the “[NL]”. Note that the brackets are not sent. Also important to note is the direction that the data is being sent, a ‘H->C‘ indicates that the data is being sent from the ‘H’ost to the EFI ‘C’ontroller. This is used to show the flow of data. All numeric values are in decimal unless otherwise noted.
Single Line Data
Many items can return a single line of data, that is terminated by a Carriage Return. If their is an error condition, the data will not be returned, but an error message will be returned. Some examples below. Note that string data items are not Quoted, and the usual comma delimited list is used to distinguish between data elements.
0,ResourceName,R,R,1,1...	[NL]

Error Data and Status
Data errors and status are returned with simple single line codes, errors also return the error code that identifies what has happened. Other status indicators include <ACK> and <NAK> which are used to acknowledge certain specific commands and transfers.

<Error,1>				[NL]
<ACK>					[NL]
<NAK>					[NL]

Table Data
If the command can return multiple data items, i.e., a table of data, then the format is a bit different. The data is encased in two identifiers that bound the actions data. This is typically in the form as.

<Table,NNNN>			[NL]
dataN,dataN+1,dataN+2...	[NL]
dataN+10,dataN+11...		[NL]
<EndTable>				[NL]

Where NNNN is typically the count of data elements, which is not normally going to be the number of lines that are going to be sent. If at any time an error happens while sending the data, the transfer will be aborted, and an <Error,NNNN> message will be sent. In addition if the Attention (‘!’) command is sent by the host, the table data being sent will halt. And the controller will return to the command state. Also typical data lengths for each line will not exceed 80 characters.

Binary Data
Binary data is the most complex data type that can be sent back from the EFI controller. Several problems exist with sending binary data, including the mention byte ordering differences between Motorola and Intel architectures. In addition, the ability to separate binary data with any delimiter is not possible. Since the host machine sets the type of data the is being requested, it in knows the size of the requested elements (from the GetTable command). With several commands, the host system will set the requested data, and when the EFI system returns a set of binary data, it will contain exactly the specified contents that the host requires. Now the host system can decode the data in the format that was originally requested. The use of binary transfers is limited to actions that need maximum throughput of data, most communications will use simple, portable ASCII transfers. An examples of a command that uses binary data are the Monitor command. Other to be determined.

BXXXX:{Data stream}

Where ‘B’ indicates binary data, and the ‘XXXX’ indicates the hex value count of bytes. Note the limitation of 64k bytes of data. The Data stream portion of the example will be the packed data that is being sent back to the host. No new line delimiters will be sent in any case. Multiple data streams will be back to back if no commands have intervened.

The format for binary data is simple, and again requires the knowledge of the requested contents. This example the host requested an Int32, Int16, Byte, and a Uint32. The data that is returned is packed, and has no byte alignment problems. Again it is up to the host system to copy the serialized data into any required data elements.

(some monitor command request the above data to be sent every .1 seconds)
.
.
.
B000b:0000000011112233333333B000b:4444444455556677777777B000b:

This data stream will be sent until a command stops or, an error occurs, in which case the normal Error Data will be sent back. It is important that the error code is not consumed by the host during a read. This of course may be impossible. but the last status can be queried through the resource table. to stop all binary transfers, the host need only send the Attention command ‘!’ during the transfer, and the binary mode will halt, and the controller will return to the command state. It is up to the host to toss out any partially read data when the ‘!’ attention command is sent.

�EFI Hardware
The basis for the EFI system’s communications interface is a simple RS-232 link. The typical situation is the EFI controller is connected via a RS-232 connection to a standard PC. The EFI hardware’s serial communication speed and throughput may be limited by many things, including actual port speed limitations, the current processing load of the CPU, etc. These must be considered with the design of the protocol so the embedded controller will not have to waste lots of time doing the protocol instead of what it really was designed to do.
�
Commands
This section will describe the supported commands that the EFI protocol will understand. The idea is that most operations are symmetric, and will not require numerous commands.

Optional values are indicated by braces. Case is ignored by the EFI protocol.
�! - Attention
The ‘!’ will typically cause the controller to stop what it is currently doing. If sending a table of data, it will halt the transfer, if a binary transfer in progress, the transfer will stop, and all scheduled transfers will halt. This includes any set with the Monitor command. After the ‘!’ is sent the controller will return to command mode.

Sample
	!				[NL]	H->C

Returned Values
	None	(may want to ACK/NAK)

�GetRes
The GetRes command will cause the EFI to send the title heading from the resource table. These can be used to interpret the values that are sent back from the GetTable command. Data is returned in comma delimited strings. The table header will determining the number of data element that are sent back.

Samples
	GetRes				[NL]	H->C

Returned Values

	The GetRes command will return the list of column heading on the Resource Table. The data is returned in a table format. NNNN is the count of individual data items. The names that are returned are typically those that are represented in a Resource entry in the Resource Table. See the resource data structure.
		
GetRes					[NL]	H->C
<Table,NNNN>				[NL]	C->H
ID,Name,Access,Location, ... 	[NL]	C->H
.
.
.
Type,State, ...				[NL]	C->H
<EndTable>					[NL]	C->H

In the event of an error the following is returned.

<Error,NNNN>				[NL]	C->H

Where NNNN is the defined error code.

Specific codes returned from the GetRes command.

Invalid Resource Table

�
GetTable [Resource ID]
The GetTable command will cause the EFI to send the entire Resource Table to the host PC. If the optional Resource ID is specified, only that resource will be sent. Resources are sent in ASCII, and the returned values can be in the form of a table, or a single line of returned data.

Samples
	GetTable 			[NL]	H->C
	GetTable 23			[NL]	H->C

Returned Values
	
	The GetTable command can return data in two formats. If no Resource ID is specified, the table is returned as a TABLE.

Data returned when the complete Resource table is returned . Notice that in this case the NNNN represents the number of lines that is being sent back, not the element count.

GetTable				[NL]	H->C
<Table,NNNN>			[NL]	C->H
0,ResourceName,R,R,3... 	[NL]	C->H
1,RPMLimit,R,R,9...
.
.
.
NN,LastOne,R,R,6,7,...		[NL]	C->H
<EndTable>				[NL]	C->H

Data returned when the Resource ID is specified is returned as a single line of ASCII text.

GetTable 33				[NL]	H->C
0,Inj1Offset,R,R,2...		[NL]	C->H

In the event of an error the following is returned.

<Error,NNNN>			[NL]	C->H

Where NNNN is the defined error code.

Specific codes returned from the GetTable command.

Invalid Resource ID
Invalid Resource Table

�
GetData ResID

The GetData command will return the all associated data that is connected to a particular specified resource. As an example if the Fuel Map resource ID is specified, the current data in it’s table will be sent back. Any resource ID that is valid will return some data back. This data is interpreted by the host system, and its format and size is specified by the GetTable command. Data is always returned in a table form.

Samples
	GetData 1
	GetData 123

Returned Values

	The data returned by the GetData command will always be in table format. It can contain 1 or more elements in the table. Where NNNN will contain the number of data elements that are being returned.

GetData 34				[NL]	H->C
<Table,NNNN>			[NL]	C->H
212,223,332,554
.
.
.
123,445,332
<EndTable>				[NL]	C->H

In the event of an error the following is returned.

<Error,NNNN>			[NL]	C->H

Where NNNN is the defined error code.

Specific codes returned from the GetData command.

Invalid Resource ID
Invalid Resource Table

�
SetData ResID
The SetData command will allow the host to set data that is connected to a particular specified resource. As an example if the Fuel Map resource ID is specified, the current data in it’s table can be sent to the EFI controller. The GetTable command must be used to determine the type and quantity of the data that is being sent to the controller. If an error occurs, data up to that point of completion MAY have modified the controller data. Some resources have read only or non modifiable data, these will return an error if an attempt to modify them happens.

Samples
	SetData 1
	SetData 123

Returned Values

	The data returned by the SetData command will always be in the form of <ACK> or a <NAK>, or an error code indicating the problem. The host will specify a table header, that contains the count and offset information. In the example the NNNN indicates the data count, and the XXXX indicates the offset into the data if it has more then 1 element. If the data is a singe element (scalar) then the offset should be 0.

SetData 34				[NL]	H->C
<ACK>					[NL]	C->H
<Table,NNNN,XXXX>			[NL]	H->C
<ACK>					[NL]	C->H
212,223,332,554			[NL]	H->C
.
.
.
123,445,332				[NL]	H->C
<ACK>					[NL]	C->H
<EndTable>				[NL]	H->C

In all cases during the transfer of data to the controller, the host must not proceed until the <ACK> is sent by the controller. If the host is not allowed to change the data, the controller will return and error, and indicate the problem. The host system should check for time-outs and abort the transfer if it cannot proceed.

In the event of an error the following is returned.

<Error,NNNN>			[NL]	C->H

Where NNNN is the defined error code.

Specific codes returned from the SetData command.

Invalid Resource ID
Invalid Resource Table
Invalid Data
Can’t modify Data
Mismatch Data Size
Mismatch Data
Invalid Offset

�
Halt
The Halt command will stop the operation of the controller, and will not operate any engine functions until the controller is restarted with the Reset or Resume command.

�
Monitor
The Monitor command will start the controller sending any data that was set in the monitor table. Data will be sent in binary format, and the controller will be in the monitor state until the Attention ‘!’ command is sent. Note that any alerts that are set will not notify the host when in Monitor mode.
�
Alert
The Alert command will set the controller to notify the host if an alert condition is activated. This mode is disabled when the controller is in Monitor mode, as any important data can be easily monitored by the host computer. An Alert will be sent when the controller is in Idle command mode, i.e., not processing any data. This is to ensure that data transfers are not interrupted with an alert report.

Returned Values

The Alert command can cause the following format message to be sent to the host controller, at any time while in idle command mode, i.e., while no active commands are being processed.

<Alert, AlertD>	[CR]	C->H

Where the AlertID is the alert condition that was triggered.

�
Reset
The Reset command will restart the controller from all internal predefined states. All values that may have been modified from operations will be lost. Caution should be used with this command, as ALL changed options will be reset back to the default values, this includes communication parameters.
�
Resume
The Resume command will restart the controller without resetting all internal data values.

�
LoadFlash
This command will allow portions of the Flash memory to be reprogrammed.
<TBD>
�
Error Codes

�
Appendix
�
Resource Table Objects
This section of will show some typical values for items that will be represented in the Resoruce Table.

Data Types

This determies the type of data the is represented by a typical resource. It may describe a register, a I/O port, a table in memory, etc.
Boolean, Byte, Char, Unit16, Uint32, Int16, Int32, Float, Double, String
Access Types
Read Only, Read Write, Write Only
Location Types
Ram, Rom, Flash, Register, Hardware
States
Enabled, Disabled

�

dfadf
���������
dafdfadf
dfadsf
adfadfasdfasdfadfasdfasdfasdfasdfasdfasdfasdfasdfadfasdfasdfasdfasdfasdffffdsasdfasfaf

dfasdfdf
adfasdfasdf
asdfasdfasdf
asdfasdfasdf
asdfasdfasdf
asdfasdf
asdfasdfasdfasdfas
asdfasfasdf
dfasdfasdfasdfasdfas

�PAGE �

�PAGE �
2
�
Copyright © 1996 Sandy Ganz, ALL RIGHTS RESERVED. All information is AS-IS and is for NON-Commercial use.

Command Mode

Monitor Mode

Process Mode

