Engine Management Timing Functions With The Motorola TPU

Introduction

The three basic TPU functions - PMMX, PSP12, and PSP3 - have been designed to provide the angle-based engine management operations needed to control fuel injection timing, ignition timing and knock window timing.

PMMX is an input function which is specifically designed to correctly process the input signals from the Bosch Ô60 teeth plus 2 missing teethÕ crankshaft timing wheel.

Key features of PMMX:

¥	Missing teeth gap is handled automatically, with no CPU intervention.

¥	A number of different noise rejection algorithms eliminate the effect of spurious signals on the input pin.

¥	Separate counters provide angular references based on crankshaft and camshaft positions.

¥	User controlled Camshaft synchronisation.

¥	Two different forms of crankshaft speed measurement are simultaneously maintained. These may be used to assist in the detection of engine misfires.

PSP12 is an output function which can be configured to provide fuel injection timing pulses or ignition timing pulses. Once initialised, the pulses will be scheduled automatically in every crankshaft or camshaft cycle, as specified by timing parameters supplied by the host CPU.

The CPU may at any time initiate an additional fuel injection pulse without loss of the normally scheduled pulse.

Key features of PSP12:

¥	The ignition pulses may be directly specified as a dwell time and spark advance angle.

¥	The fuel injection pulses may be specified as a fuelling time and a valve closure time.

¥	Additional fuel pulses may be asychronously initiated by the CPU.

¥	Cycle-based scheduler allows CPU to update pulse angles completely asynchronously to currently scheduled pulses.

¥	Automatically compensates for changes in engine speed.

¥	Output pulses may be scheduled normally to start or stop at any point within the missing teeth gap.

¥	Output pin may be forced permanently low or high.

�PSP3 is an output function which can be configured to generate knock window pulses, based on angular position alone. Once initialised by the CPU, the pulses will be automatically scheduled at a programmable rate related to the crankshaft or camshaft position.

Key features of the PSP3:

¥	Active low or active high pulses may be selected.

¥	Automatically compensates for changes in engine speed.

¥	Output pulses may be scheduled normally to start or stop at any point within the missing teeth gap.

¥	Crankshaft timing pulses may be reconstructed with the elimination of missing teeth gap.

¥	Output pin may be forced permanently low or high.

�The PMMX Function

PMMX is used to measure engine speed and maintain separate angular position counters referenced to the crankshaft cycle (360¡) and the engine cycle (720¡). It is designed to work with a particular toothed wheel arrangement consisting of 58 evenly spaced teeth, plus a spacing which is equivalent to two missing teeth (refered to as the gap). Figure 1 shows a linearised pattern of the toothed wheel.

Instantaneous engine speed is obtained by measuring the period between two normal tooth transitions. Either the positive or negative edge of the transition may be used. The gap period is not measured as such. Instead, the gap is divided into 3 segments separated by two simulated transitions which are generated automatically by the PMMX function. The first 2 segments have the same period, each of which is the same as the last period before the gap. The period of the third segment is the difference remaining in the gap after the first two segments have been subtracted. The period of the third segment is neither measured nor stored by the PMMX function. Figure 2 shows the actual periods obtained in the gap.

In addition, the PMMX function may be used to measure the total period accumulated over a user defined angle, commencing at a user defined angle. The accumulated angle is buffered, to allow the host CPU to read the latest accumulated value at any time. Figure 3 shows an example timing diagram for this measurement.

There are 2 tooth counters, representing angular position of the crankshaft and engine cycle to a resolution of 6¡. The 360¡ tooth counter counts from 0 to 59, and the 720¡ tooth counter counts from 0 to 119. The counters are incremented only after the PMMX function recognises a synchronising condition, and places itself in the Synchronised State. The synchronising condition is determined by a tooth period which is at least greater than the last period by a user defined amount. This value is specified as a fractional ratio multiplier (RATIO) in the range 0 to 3.98.

In the pre-synchronised state, (i.e. before the first gap is detected), the PMMX function may be programmed to ignore a number of transitions which occur immediately after start up of the function. This number is user programmable, and defines the Wait State. During this time, the period is not measured and the tooth counters are not incremented. If insufficient transitions occur during the Wait State, an error message is placed in parameter RAM to indicate a stalled condition, and an interrupt is generated to the host CPU.

�Entering the Synchronised State

Once the Wait State has passed, every input transition causes the PMMX function to search for the synchronising gap by scheduling a timeout match at a time given by the equation (PERIOD * RATIO). When the match occurs, the PMMX function is set to the Synchronised State, and both the 360¡ and 720¡ angle counters are reset to 0. In addition, a status code is placed in parameter RAM to indicate that the PMMX is in its Synchronised State, and an interrupt is generated to the host CPU.

In addition, a timeout match is rescheduled to allow for the possibility that a stalled condition rather than a gap has occurred. If this match occurs, then the Synchronised status code is replaced with a Stall status code, and an interrupt is issued to the host CPU.

The PMMX function is maintained in the Synchronised State.

Synchronised State

While running in the Synchronised State, every subsequent transition, up to and including the 58th transition, causes the 360¡ and 720¡ counters to be incremented.

Starting at the second transition after the gap, the tooth period is also updated on every transition, up to and including the 58th transition.

In addition, a stall detection timeout match is scheduled for a time of (PERIOD*RATIO).

Missing Tooth Filler

When the 58th transition occurs, a tooth filler match is scheduled for a time of PERIOD after the time of the current transition. This effectively simulates the occurance of a tooth within the gap, at a point which corresponds to the expected position if the toothed wheel were rotating at a constant speed. When the match for the first simulated tooth occurs, the 360¡ and 720¡ counters are incremented as normal, but the period is unchanged. Following the first simulated tooth, a second simulated tooth is scheduled in exactly the same manner. When the match for the second simulated tooth occurs, the 360¡ counter is reset to 0. The 720¡ counter is incremented.

If a transition is detected during the tooth filling operation, an error code is returned in parameter RAM and an interrupt is issued to the host CPU. No other action is taken by the PMMX function until the next transition.

Under normal operating conditions, the 360¡ counter is reset on the second simulated tooth of every gap, while the 720¡ counter is reset on the second simulated tooth of every second gap. Figure 4 shows how the counters increment across gaps.

�Allowance for Deceleration Across Gap

To optimise the performance of the PMMX function, the period parameter is not updated in the gap. This may result in a significant discrepancy between the period used by the PMMX function and the actual period of the toothed wheel if there is a great change in engine speed. To allow for this situation, the value used to schedule the stall detection timeouts is automatically modified at 2 points:

È	On the second simulated tooth within the gap.

È	On the first transition after the gap.

At these 2 points, the stall detection timeout is increased to (PERIOD*RATIO^4). See figure 4.

This compensates for a potential increase in the period of the third segment within the gap and the first normal tooth period after the gap, caused by engine deceleration.

Noise Suppression

Two methods are implemented to reduce the effects of noise on the operation of the PMMX function.

The first method ignores certain transitions which occur at an interval which is less than an expected value, given by the equation PERIOD/RATIO. i.e. If the latest period multiplied by RATIO is less than the previous period, then the transition is regarded as spurious, and is ignored. An error code is written to parameter RAM and an interrupt is issued to inform the host CPU that a noise pulse was detected. To allow for acceleration within the gap, the spurious transition test is not performed on the first transition after the gap. Figure 5 shows the timing of the spurious extra transition detector.

The second method detects the loss of an expected tooth transition, and inserts a simulated transition at the expected point. The simulated tooth is placed at a time after the last valid transition which corresponds to a constant speed of rotation of the toothed wheel. i.e.the measured period does not change. Figure 6 shows the timing of the spurious missing transition detector.

Angle Interrupter

Apart from those generated by the Synchronising condition or error conditions, interrupts may be automatically generated by the PMMX function, either at a single angular position (resolved to 6¡), or at every 6¡. The choice is user defined. The user defined interrupt feature can be disabled.

Accumulated Periods

In addition to measuring and storing in parameter RAM, the instantaneous engine speed every 6¡, the PMMX function may be used to measure and store the period taken by the toothed wheel to cover an angle defined by the user, starting at an angle defined by the user. The resolution of the accumulating and starting angle is 6¡ with a range of 0¡ to 720¡. Once the accumulated period measurement starts, it continues indefinitely or until the user specifies an invalid starting angle (e.g. 726¡). The accumulated result is buffered to allow the host CPU to read the latest value asynchronously at any time.

Camshaft Synchroniser

Since the initial synchronisation causes the 720¡ counter to be reset to 0, it is possible that this value could be 360¡ out of phase with the actual engine cycle. The PMMX function includes a feature which allows the host CPU to asynchronously adjust the value of the 720¡ counter to the correct engine cycle angle.

Error Detection and Handling

When the PMMX detects an error, it returns an 8 bit error code, and issues an interrupt to the host CPU.

Further transitions and matches are processed as if the error had not occurred.

This may result in a new error code overwriting the previous value. This places the onus of error processing on the host CPU.

The PMMX function can generate the following error codes:

	Error Type				Error Condition

	Error_Code_Stall	Insufficient transitions occurred in Wait State.

	Error_Code_Shortgap	Unexpected transition occurred in gap.

	Error_Code_Noise	Unexpected transition occurred outside gap.

	Error_Code_Sync_Stall	Tooth period exceeds expected maximum in Synchronised State.

	Error_Code_Match_Range	Timeout match exceeds $8000.

When an error code is generated, the rescheduling of timeout matches is inhibited in all cases except for Error_Code_Sync_Stall, which is processed as if a transition had occurred. (See Noise Suppression, above)

			

Activating the Output Functions PSP12 and PSP3.

Once the Synchronised State is attained, the PMMX function may generate service requests to the output functions PSP12 and PSP3, so that they can properly schedule their output pulses. This is achieved by using the LINK_START and LINK_COUNT parameters of the PMMX function. The output functions which receive service requests are user defined, and the service requests are only sent after the PMMX has completed all its calculations and parameter updates. This ensures coherency of data usage between the PMMX and PSP functions.

�System Requirements and Performance

The function must use TCR1 as its free-running timebase. TCR2 is unused.

The PMMX function takes a maximum of approximately 18 µS to execute, including the generation of service requests to a maximum of 15 output functions.

The minimum crankshaft speed at which the PMMX can run is limited by the clock rate of TCR1 and the minimum value of RATIO.

With a 2 µS clock rate and a RATIO value of 1.5, the minimum crankshaft speed is approximately 24 rpm. Note that, under these conditions, the PMMX function will generate a range error on the last simulated tooth within the gap and on the 1st tooth following the gap. Apart from failing to schedule a stall detection match at those points, the errors do not affect the operation of the PMMX function.

The maximum crankshaft speed which may be processed without losing tooth transitions is a function of the number of active TPU channels. In practice, the maximum speed is approximately 10000 rpm.

Due to the functional operation of the additional fuel pulse in the PSP12 function, the PMMX is restricted to channel numbers 0 to 7.

The PMMX function takes a maximum of approximately 18 µS to execute with a 16.78MHz system clock. The actual time taken depends on the state being executed. The following table gives the execution times for various states at 16.78MHz:

	Function State	Execution Time

	Initialisation	0.238µS

	Synchronisation	5.7µS

	Normal Tooth	14.4µS

	Last Tooth Before Gap	11.5µS

	1st Missing Tooth in Gap	8.7µS

	2nd Missing Tooth in Gap	15.1µS

	1st Tooth After Gap	17.1µS

	Cam Synchronisation	0.7µS

	���Parameter Ram Definitions for PMMX function

CONFIG

This 9 bit value should be initialised by the CPU prior to starting the function. It contains the channel latch controls and configures the PSC, PAC and TBS fields. For correct operation of this function, the channel must be configured as an input, with capture and match on TCR1 only. The PAC field may be set up to detect either rising edge or falling edge.

Table 1 shows the allowable values for this parameter.

	Table 1.

	Config	Action

	$004	Detect Rising Edge, Capture and Match TCR1.

	$008	Detect Falling Edge, Capture and Match TCR1.

LONG_PERIOD

This 16 bit value is updated by the TPU only when the function is running in the synchronised state. The parameter contains the latest complete accumulation of tooth periods defined by NUMBER_OF_PERIODS, and START_PERIOD. The parameter is updated only after NUMBER_OF_PERIODS has elapsed, starting from the transition defined by START_PERIOD. The CPU may read the parameter at any time to obtain the latest completed result. A value of $FFFF indicates that LONG_PERIOD has overflowed.

Note 1: Because of the algorithm used, the first occurance of the transition defined by START_PERIOD will result in an update to LONG_PERIOD.

Note 2: LONG_PERIOD shares the same parameter RAM location as CONFIG.

WAIT_TEETH

This 8 bit value should be initialised by the CPU prior to starting the function. The parameter contains the number of teeth to ignore before searching for the first synchronising condition immediately after the function is started. The TPU decrements the parameter by 1 on every transition during the pre-synchronised state, until it reaches a value of 0. The function then starts searching for the synchronising condition. There are no further decrements to WAIT_TEETH.

�ACCU_LONG_PERIOD

This 16 bit value is updated by the TPU only when the function is running in the synchronised state. It contains the latest uncompleted accumulation of periods defined by NUMBER_OF _PERIODS and START_PERIOD. When NUMBER_OF_PERIODS has elapsed, ACCU_LONG_PERIOD is copied to LONG_PERIOD and then cleared to zero.

Note 1: Because of the algorithm used, the parameter is updated on every transition between the first synchronising condition and the first occurance of the transition defined by START_PERIOD, at which point the parameter is copied to LONG_PERIOD and then cleared to zero.

Note 2: ACCU_LONG_PERIOD shares the same parameter RAM location as WAIT_TEETH.

STATUS_NUMBER

This 8 bit value is valid in both the pre-synchronised and synchronised states of the function. The parameter is updated by the TPU, and should be cleared by the CPU after the CPU has read the parameter.

It defines the status of the function at the time of the last interrupt to the CPU. A value less than $80 provides functional status information, while a value greater than $80 indicates an error condition.

Table 2 and 3 show valid functional and error status values.

	Table 2 - Functional Status

	Status_Number	Condition

	$00	Tooth Interrupt Occurred.

	$01	First Synchronising Condition Detected.

	Table 3 - Error Status

	Status_Number	Condition

	$81	Insufficient transitions occurred in Wait State.

	$82	Unexpected transition occurred in gap.

	$83	Unexpected transition occurred outside gap.

	$84	Tooth period exceeds expected maximum in Synchronised State.

	$85	Timeout match exceeds $8000.

Note 1: Under certain severe application dependant conditions, the TPU may issue interrupts faster than the CPU can handle them. In this case only the latest Status or Error code will be available to the CPU.

Note 2: Error conditions do not cause loss of the synchronised state.

�INT_TOOTH

This 8 bit value may be updated by the CPU at any time. It defines the tooth number(s) at which an interrupt is generated to the CPU when the function is operating in either the pre-synchronised or synchronised state. The parameter is compared against COUNT_720. An interrupt is generated when the two parameters match. To generate an interrupt on every tooth including the tooth filler positions, the most significant bit of INT_TOOTH must be set to Ô1Õ (i.e. a value in the range $80 to $FF). To inhibit tooth interrupts, INT_TOOTH must be greater than the maximum value attainable by COUNT_720, and less than $80.

START_PERIOD

This 8 bit value may be updated by the CPU at any time, but it is used only in the synchronised state. It defines the number of the transition at which ACCU_LONG_PERIOD is initialised and starts accumulating periods. The transition number is obtained from COUNT_720. Refer to LONG_PERIOD and ACCU_LONG_PERIOD sections for more information.

Note: When LONG_PERIOD is updated, the TPU increments START_PERIOD by the value stored in NUMBER_OF_PERIODS.

NUMBER_OF_PERIODS

This 8 bit value may be updated by the CPU at any time, but it is used only in the synchronised state. It defines the number of periods which are accumulated in ACCU_LONG_PERIOD before the result is copied to LONG_PERIOD. Refer to LONG_PERIOD and ACCU_LONG_PERIOD for more information.

RATIO

This 8 bit value may be updated by the CPU at any time and is used in both the pre-synchronised and synchronised states of the function. In the pre-synchronised state, it is used to search for the first synchronising condition. In the synchronised state, it is normally used to detect tooth periods which are less than the previous PERIOD/RATIO or are greater than the previous PERIOD*RATIO.

RATIO is scaled to the fractional range 0 to 4-(1/64), i.e. 0 to 3.98.

The value of RATIO may be calculated using the following formula:

	RATIO = Fraction Ratio * 64

Where Fractional Ratio is the required value in the range 0 to 3.98.

Refer to the earlier sections ÒAllowance for Deceleration Across GapÓ and ÒNoise SuppressionÓ for more information on the functional operation of this parameter.

�COUNT_360

This 8 bit value may be updated by the CPU prior to enabling the function. In the pre-synchronised state the parameter is not changed by the TPU. It is cleared to zero by the TPU on detection of the first synchronising condition.

In the synchronised state, the TPU increments this parameter by 1 on every tooth transition and on every missing tooth filler, until the next synchronising condition for this parameter is detected. The TPU then clears the parameter to zero. The range of this tooth counter parameter is 0 to 59.

LINK_START:LINK_COUNT

These 4 bit values are usually updated by the CPU prior to enabling the function, but they may be updated at any other time. The values define which channels are linked to once the function has completed processing the current tooth transition event. LINK_START defines the first linked channel, and LINK_COUNT defines the total number of channels linked. The link operation only occurs when the function is in the synchronised state.

If LINK_START+LINK_COUNT exceeds the maximum channel number, then the link will Ôwrap aroundÕ. i.e. If LINK_START=15 and LINK_COUNT=4, then the linked channel numbers are 15,0,1,2.

Note 1: A LINK_COUNT value of 0 is invalid and will produce unpredictable operation of the TPU.

�COUNT_720

This 8 bit value may be updated by the CPU prior to enabling the function. In the pre-synchronised state the parameter is not changed by the TPU. It is cleared to zero by the TPU on detection of the first synchronising condition.

In the synchronised state, the TPU increments this parameter by 1 on every tooth transition and on every missing tooth filler, until the next synchronising condition for this parameter is detected. The TPU then clears the parameter to zero. The range of this tooth counter parameter is 0 to 119.

PERIOD

This 16 bit value is updated by the TPU in both the pre-synchronised and synchronised states. It contains the time between the last two transitions measured in TCR1 counts. The CPU may read this parameter at any time.

Note: PERIOD is not updated during the missing teeth gap, nor is it updated if the current period is less than the previous PERIOD/RATIO.

LAST_TRANSITION

This 16 bit value is updated by the TPU in both the pre-synchronised and synchronised states. It contains the time of the latest transition measured in TCR1 counts. The CPU may read this parameter at any time.

�Host Interface to PMMX function

Initialisation

1)	The CPU must write to the following parameter RAM locations while the PMMX function is disabled:

i)	CONFIG.

	This parameter should be set to one of the values in Table 1.

ii)	WAIT_TEETH.

	This parameter should be set to the number of transitions which should be ignored before the search for the synchronising condition starts.

iii)	STATUS_NUMBER, INT_TOOTH.

	STATUS_NUMBER would normally be cleared to zero.

	INT_TOOTH should be set to generate no interrupt, interrupt on one tooth, or interrupt on every tooth.

iv)	START_PERIOD, NUMBER_OF_PERIODS

	START_PERIOD should be set to the tooth number at which LONG_PERIOD measurements should start.

	NUMBER_OF_PERIODS should be set to the number of periods over which LONG_PERIOD is accumulated.

v)	RATIO, COUNT_360.

	RATIO should be set to a value which guarantees discrimination between the synchronising condition and normal periods under all speed changes.

	COUNT_360 may be set to any arbitrary value.

vi)	LINK_START:LINK_COUNT, COUNT_720.

	LINK_START should be set to the first output channel which references the PMMX parameters, and LINK_COUNT to the total number of output channels which reference the PMMX parameters.

	COUNT_720 may be set to any arbitrary value.

Note: If the PMMX function is disabled by the host CPU while the function is already running, the host must wait at least 20µS before modifying the parameter RAM.

2)	The CPU should issue the Host Service Request %11, and then enable the channel by assigning it a high priority.

Camshaft Synchroniser

1)	The CPU should issue the Host Service Request %01, while the PMMX is in the Synchronised State.

	Before the next transition is serviced, the PMMX function executes the following algorithm:

	COUNT_720 := (COUNT_720 + 60) MOD 120

	If the PMMX is currently servicing a transition when the HSR is made, then the HSR is left pending until the PMMX finishes servicing the transition. This ensures data coherency.

 �

 �

�

�

��

 �

��

The PSP12 Function

This function is designed to produce a logic high output pulse. Through the use of the Host Sequence bits, it may be operated in one of two basic ways:

È	Time-Angle

È	Angle-Time

�TIME-ANGLE OPERATION

The falling edge of the output pulse is defined by an angular position referenced from one of the 2 tooth counters (COUNT_360 and COUNT_720) maintained by the PMMX function. Since the tooth counters resolve to only 6¡, an interpolation algorithm is used to increase the positional resolution of the edge to better than 0.1¡. The falling edge is defined by a 16 bit parameter consisting of an 8 bit tooth count, and an 8 bit binary-weighted tooth fraction. The parameter is called End_Angle. The range of the fraction is 0 to 0.996 of a tooth count.

The rising edge of the output pulse is defined as a constant time prior to the falling edge. This time is specified as a 16 bit value, and is called High_Time. The scheduling of the rising edge is based on a predictive algorithm which is executed every 6¡, as a result of a service request from the PMMX function (See Figure 7). In this way, the angular placement of the falling edge becomes essentially independent of the period of the toothed wheel.

Through the use of the Host Sequence bits, the user may configure the Time-Angle function of PSP12 to operate in one of two different modes:

È	Time Priority.

È	Angle Priority.

Time Priority

Provided the CPU does not change the High_Time parameter, once the rising edge occurs in Time Priority mode, the duration of the high pulse is held constant, irrespective of change in the tooth period. This means that the falling edge may occur at a different angle to the one specified in End_Angle if the tooth period changes while the output is high (See Figure 8).

The High_Time parameter is unbuffered. This means that if the host CPU changes its value, the TPU will use the new value immediately at the next edge of the output pulse, or at the next tooth transition, irrespective of whether the output is high or low.

Pulse Angle Scheduling

The CPU specified End_Angle is buffered by the TPU which stores it in the parameter End_Angle_Active. End_Angle_Active is the working value used by the TPU to schedule the current pulse edges. Under normal conditions the CPU would write the new desired angular position of the next fuel pulse falling edge in the parameter End_Angle. At the next tooth edge, the TPU performs a calculation to determine if the new End_Angle value can be used. If so, the End_Angle parameter is copied by the TPU into the parameter End_Angle_Active. If not, the TPU uses the existing End_Angle_Active parameter. In this way, the CPU may asynchronously update the pulse angle without inadvertant loss or addition of a pulse. Because of the cyclical nature of the angular system, the maximum change in End_Angle is restricted to ±60 degrees per cycle.

Additional Pulse

The High_Time and End_Angle parameters define the duration and angle of a pulse which is scheduled by the TPU to occur once every crankshaft or engine cycle. The TPU's pulse scheduling algorithm would normally prevent the occurance of additional pulses within one crank or engine cycle. A special host service request is available to allow controlled asynchronous pulses to occur in addition to the one normally scheduled. The parameter Extra_Time defines the duration of the additional pulse. As the CPU initiates this pulse immediately via a host service request, no angular parameter is used.

Depending on the angular position of the CPU request, the cyclically generated pulse might or might not be disturbed by the additional pulse.

Figure 16 and 18 show a CPU requested additional pulse without disturbance to the cyclical pulses. Figure 17 and 19 show the merging of the additional pulse with the cyclical pulse when the CPU request is sufficiently close to or coincident with the cyclical pulse.

The effects of TPU latency might cause an additional fuel pulse to move the position of the cyclical pulse. An example of this is shown in Figure 17a.

Special Cases for the Time Priority Mode

If the rising edge is predicted to be in the past, the rising edge is forced immediately. This permits output pulses to extend over a period exactly equal to or greater than one revolution of the referenced angle counter without anomalous operation of the PSP12 Time Priority Function. Under these circumstances, there will be a short low going pulse whose width is determined by the TPU latency.

Angle Priority

Every 6¡, the Angle Priority mode calculates the angular position of the falling edge, irrespective of whether the output is low or high. This means that while the output pin is high, the actual duration of the high pulse may change as a result of a change in tooth period, to ensure the best case angular position of the falling edge (See Figure 9).

In Angle Priority mode, both the High_Time and End_Angle parameters are buffered by the TPU into working parameter RAM locations, called High_Time_Active and End_Angle_Active. If both High_Time and End_Angle parameters are to be changed, then the CPU should write to these parameters using a 32 bit instruction to ensure coherency of the changed data.

Pulse Angle Scheduling

As in the Time Priority mode, Angle Priority uses the same pulse scheduling algorithm to ensure no pulses are inadvertantly added or lost because of CPU updates to the End_Angle parameter.

Figure 11 shows how a CPU requested change is deferred to avoid spurious additional output pulses. Angular values are referenced to the second missing tooth in the missing teeth gap. At this point in the gap the crank counter is reset to zero, corresponding to 0¡. In this example, a CPU request for change in End_Angle from 51¡ to 99¡ (angle retarding) does not affect the first pulse. If the 99¡ request were immediately scheduled while the first pulse was active, then the original pulse width would be extended erroneously by 48¡. If the 99¡ request were scheduled immediately after the falling edge of the first pulse, then it is possible that an additional pulse would occur immediately. The algorithm implemented in TPU microcode ensures that the 99¡ pulse occurs in the next crank or engine cycle, as required, and shown in figure 11.

The microcoded scheduler also ensures that a CPU requested advance in End_Angle does not cause truncation or loss of an already scheduled pulse. Figure 12 shows a typical example of this situation.

In the event that a CPU request to advance the End_Angle is executed late in the crank or engine cycle, but before the output pulse is active, then the actual falling edge might be displaced, as shown in figure 13. In this case the actual advance in angle is less then requested. This is caused by the fact that the rising edge of the pulse is calculated to be in the past, which results in the rising edge occurring immediately, but later than required.

Limitation of Angle Priority Mode

The maximum High Time of the Time-Angle function in Angle Priority Mode must not exceed a value which causes the next rising edge to occur within 60¡ of the current falling edge. Figure 20 is a graphical representation of the limit case. If High Time exceeds this limit, then spurious pulses can occur.

Time and Angle Priority mode - Common Features

The output pulse may be scheduled every crankshaft cycle or every engine cycle by referencing the appropriate tooth counter in the PMMX function.

The actual level of the output pin is stored in a single bit of parameter RAM. The bit is updated on every transition of the pulse.

Interrupts may be optionally generated on the falling transition.

The output pin level may be forced continuously low by the host CPU. To do this, the output pin must have a low impedance to Vss. The CPU can then re-initialise the Time_Angle function with the pin configured for input, and a High_Time of zero. The function will continue to execute normally, but the output pin will remain low. The advantage of this technique is that the function can still generated interrupts to the CPU at the specified End_Angle value.

Limitations of Time_Angle Function

Figure 14 shows a limitation in pulse scheduling due to microcode implementation. If acceleration causes both the rising and falling edges of a pulse to become scheduled in the next tooth period to the expected one, the pulse is re-scheduled for the next cycle by the microcoded pulse scheduler. This means that the expected pulse will not occur. This problem only arises for short pulse widths and high acceleration. The problem can be fixed by a microcode change.

ANGLE-TIME OPERATION

The Angle_Time function must be operated with Time Priority Mode selected.

The rising edge of the output pulse is defined by an angular position referenced from one of the 2 tooth counters maintained by the PMMX function. The rising edge is defined by a 16 bit parameter consisting of an 8 bit tooth count, and an 8 bit binary-weighted tooth fraction. The parameter is called Start_Angle. The range of the fraction is 0 to 0.996 of a tooth count.

The falling edge of the output pulse is defined as a constant time after the rising edge. This time is specified as a 16 bit value, and is called High_Time. The scheduling of the rising edge is based on a predictive algorithm which is executed every 6¡, as a result of a service request from the PMMX function (See Figure 7a). In this way, the angular placement of the rising edge becomes essentially independent of the period of the toothed wheel. Once the rising edge occurs, the duration of the high pulse is defined solely by High_Time, and is independant of any change in the tooth period. The High_Time value may be changed by the CPU at any time.

Limitations of the Angle-Time Function

Anomalous operation will occur if the High_Time equals or exceeds the period of the cycle of the referenced tooth counter.

System Requirements and Performance

Both Time-Angle and Angle-Time functions have the same requirements and performance.

The functions must use TCR1 as their free-running timebase. TCR2 is unused.

The maximum value of High_Time which may be specified by the host CPU is $8000 TCR1 counts. Note however that in Angle Priority mode, the actual duration of the pulse might extended beyond $8000 as a result of deceleration of the toothed wheel.

Correct operation of the functions is ensured even if the duration of the pulse lies within a single tooth period - i.e. if the rising and falling edges occur without a change in the value of the referenced counter.

Specifying a High_Time value in excess of $8000 will cause incorrect operation of the PSP12 functions. Specifying a High_Time of zero will produce a pulse width which is determined by TPU latency.

An output pulse may be orthogonally scheduled to start and/or end at any point within the gap of the toothed wheel. i.e. The host CPU does not need to make allowances for the gap.

The PSP12 function takes a maximum of approximately 17 µS to execute with a 16.78MHz system clock. The actual time taken depends on the state being executed. The following table gives the execution times for various states at 16.78MHz:

	Function State	Output Level	Execution Time

	Initialisation	X		0.95µS

	Link from PMMX	0		16.4µS	Note 1

	Link from PMMX (Time Priority)	1	2.1µS	

	Link from PMMX (Angle Priority)	1	6.8µS		

	Rising Edge of Pulse (Time Priority)	1	3.3µS

	Rising Edge of Pulse (Angle Priority)	1	8.0µS	

	Falling Edge of Pulse	0	17.8µS	Note 2

Note 1:	Execution time can be reduced to 7.7µS if the microcoded pulse scheduler is removed.

Note 2:	Execution time can be reduced to 9.1µS if the microcoded pulse scheduler is removed.

	

The PSP12 functions are designed to process links generated by the PMMX function on every real and simulated tooth edge. This implies that the PMMX and all pulse output functions should be processed within a tooth period. However, the combination of the TPU's scheduler and the design of the PMMX and PSP functions can allow correct output pulse operation to occur at tooth periods less than the total system latency. To ensure valid operation of these functions when the total system latency exceeds the tooth period, the PMMX function must be set to high priority, and the PSP12 and PSP3 functions must be set to middle or low priority.

Two additional global parameter RAM locations (PSPTEMP1, PSPTEMP2) are used by the PSP12 functions to guarantee parameter coherency between the host CPU and the TPU. Two additional global parameter RAM locations (PERIOD and LAST_TRANSITION) are used to interpolate the output pulse position. The PERIOD and LAST_TRANSITION parameters are maintained by the PMMX function.

���

Parameter Ram Definitions for PSP12 functions

CONFIG/EXTRA_TIME

During initialisation, this parameter is refered to as CONFIG. It is a 9 bit value and should be initialised by the CPU prior to starting the function. It contains the TPU channel latch controls and configures the PSC, PAC and TBS fields. For correct operation of the function, the channel must be configured as an output, with match on TCR1 only. TCR2 is not used by these functions.

Before initialisation of the selected function, this parameter should normally be set to a value of $8A.

This parameter may also used to permanently force the pin low. See section ÔHost Interface to PSP12 FunctionÕ for details.

Table 4 shows the normal options for the CONFIG parameter.

	Table 4.

	Config	Action

	$8A	Pin is output, forced low, use TCR1 timebase.

	$89	Pin is output, forced high, use TCR1 timebase.

	$13	Pin is input, use TCR1 timebase.

During normal operation of the function, this parameter may be used to provide asynchronous CPU-requested pulses in addition to the cyclically scheduled pulses. In this case, the parameter is refered to as EXTRA_TIME, and all 16 bits of the are used to define the duration of the additional pulse in TCR1 counts. The range of values is 0 to $8000. Note however that EXTRA_TIME + HIGH_TIME must not exceed $FFFF.

HIGH_TIME

This 16 bit value may be updated by the CPU at any time.

In Time Priority mode, it defines the duration of the high time of the next or current output pulse, in TCR1 counts.

In Angle Priority mode, it specifies the duration of the high time of the next output pulse, in TCR1 counts.

Refer to section ÔTime-Angle OperationÕ for more details.

END_ANGLE/START_ANGLE

This 16 bit value may be updated by the CPU at any time.

The name END_ANGLE is used by the Time-Angle functions, where it defines the angular position of the falling edge of the next output pulse. The name START_ANGLE is used by the Angle-Time function, where it defines the angular position of the rising edge of the next output pulse.

The parameter is divided into two 8 bit fields called END_TOOTH and END_RATIO (or START_TOOTH and START_RATIO).

END_TOOTH (or START_TOOTH) is in the most significant byte. It defines the integer part of the angular position resolved to tooth counts as specified by either of the tooth counters COUNT_360 or COUNT_720.

END_RATIO (or START_RATIO) is in the least significant byte. It defines the fractional part of the angular position as a fraction of the most recently measured tooth period. The range of END_RATIO (or START_RATIO) is 0 to 255/256 (i.e. 0 to 0.996).

Note: As this parameter is continuously scheduled ahead of time, on every tooth transition and on every tooth filler, the falling edge (or rising edge in the case of START_ANGLE) may be specified to occur coincidently with a tooth transition, or at any point within the gap.

HIGH_TIME_ACTIVE/RISING_EDGE_TIME

This 16 bit value is used by the TPU only.

In Time Priority mode, the parameter holds the time in TCR1 counts of the last low to high transition of the output pulse.

In Angle Priority mode, it holds the duration of the high time of the currently scheduled output pulse. Refer to ÔTime-Angle OperationÕ section for more details.

END_ANGLE_ACTIVE/START_ANGLE_ACTIVE

This 16 bit value is used by the TPU only.

For the Time-Angle function, it holds the angular position of the falling edge of the currently scheduled output pulse.

For the Angle-Time function, it holds the angular position of the rising edge of the currently scheduled output pulse.

This parameter is defined in the same way as END_ANGLE/START_ANGLE.

Refer to ÔTime-Angle OperationÕ section for more details.

AD:SPACING, EX:COUNT_PTR:PIN_LEVEL

AD occupies bit 15 of this parameter and is used as a flag by the TPU to indicate that a CPU requested additional pulse is in progress. The CPU should reset this flag to zero prior to initialising the function.

SPACING occupies bits 8 to 14 of this parameter and is used to define the scheduling cycle of the output pulses. It should be updated by the CPU prior to starting the function.

Table 5 shows the valid values for SPACING.

	Table 5.

	Spacing	Action

	60	Pulses scheduled on crankshaft cycle.

	120	Pulses scheduled on engine cycle.

EX occupies bit 7 of this parameter and is used as a flag by the TPU to indicate that a CPU request for an additional pulse has caused extension of the cyclical pulse. The CPU should reset this flag to zero prior to initialising the function.

COUNT_PTR occupies bits 1 to 6 of the least significant byte. It should be updated by the CPU prior to starting the function. It specifies the relative address of the required tooth counter. This should be either COUNT_360 for crankshaft cycle pulses, or COUNT_720 for engine cycle pulses.

Note: An even address should be specified. When the TPU uses this parameter, bit 0 is ignored. Also, because bit 7 is unavailable the referenced address is restricted to TPU channels 0 to 7.

PIN_LEVEL occupies bit 0 of the least significant byte. It is updated by the TPU, and may be updated by the CPU prior to enabling the function. It indicates the state of the output pin after the last output transition.

Note: PIN_LEVEL is not updated by the TPU until the first output edge occurs.

�PSPTEMP1

This 16 bit parameter is used by the TPU only, to provide coherency between the HIGH_TIME and END_ANGLE (or START_ANGLE) parameters. The parameter is used temporarily during execution of certain states of the function.

PSPTEMP2

This 16 bit parameter is used by the TPU only, to provide coherency between the HIGH_TIME and END_ANGLE (or START_ANGLE) parameters. The parameter is used temporarily during execution of certain states of the function.

Host Interface to PSP12 function

Initialisation

1)	The CPU must write to the following parameter RAM locations while the PSP12 function is disabled:

i)	CONFIG/EXTRA_TIME.�The name CONFIG applies to bits 0 to 8 during initialision of the function. These should be set to one of the values in Table 4.�(The name EXTRA_TIME applies to all 16 bits during normal operation of the function. In this case, the parameter defines the duration, in TCR1 counts, of the CPU requested additional pulse.)

ii)	HIGH_TIME.

	This parameter should be set to the required duration of the cyclical output pulse width in TCR1 counts. Note that the range of values is restricted to 0 to $8000. Values outside this region will cause anomolous operation of the function.

iii)	END_ANGLE/START_ANGLE.

	The name END_ANGLE is used by the Time-Angle functions, and the parameter should be set to the required falling edge angle of the cyclical output pulse.

	The name START_ANGLE is used by the Angle-Time function, and the parameter should be set to the required rising edge angle of the cyclical output pulse.

iv)	HIGH_TIME_ACTIVE.

	In Angle Priority mode only, this parameter should be set to the same value as HIGH_TIME, to avoid spurious generation of output pulses.

v)	END_ANGLE_ACTIVE.

	This parameter should be set to the same value as END_ANGLE, to avoid spurious generation of output pulses.

vi)	AD:SPACING, EX:COUNT_PTR:PIN_LEVEL.�AD should be reset to zero.

	SPACING should be set to one of the values given in Table 5.�EX should be reset to zero.

	COUNT_PTR should be set to the address of the reference tooth counter. Note that the tooth counter is restricted to channels 0 to 7.

	PIN_LEVEL may be set to 0 or 1 if desired.

2)	The CPU should set the Host Sequence bits according to the function and mode required. Refer to Programmers model for details.

3)	The CPU should issue the Host Service Request %11, and then enable the channel by assigning it a middle or low priority.

�Additional Pulse

1)	The CPU must write to the following parameter RAM locations at any time the PSP12 function is enabled.

i)	EXTRA_TIME.

	This 16 bit parameter should contain the duration of the additional pulse in TCR1 counts. The maximum value of this parameter is $8000. In addition, EXTRA_TIME + HIGH_TIME must not exceed $FFFF.

2)	The CPU should then issue the Host Service Request %01.

Note: If an additional pulse is already in progress, then this request is ignored.

Force Pin Low

1)	The CPU must write to the following parameter RAM locations while the PSP12 function is enabled, and not processing an additional pulse request:

i)	CONFIG.

	This parameter should be loaded with $13.

ii)	HIGH_TIME.

	This parameter should be set to zero.

2)	The CPU should then issue the Host Service Request %11.

Note 1:	The output pin must have a pulldown resistor to Vss to ensure the pin goes low.	

Note 2:	Interrupts may still be generated to the CPU at the angle defined by End_Angle..

Note 3:	To restart the function, the CPU should ensure all appropriate parameter RAM is set up correctly and issue an Initialisation Host Service Request (%11).

�

�

�

�

�

 �

���������������������The PSP3 Function

This function is designed to produce an output pulse whose rising and falling transitions are both specified by angles. The angles, called Start_Angle and End_Angle, are defined in an identical manner to that of End_Angle in the PSP12 function. Through the use of the Host Sequence Bits, PSP3 has two different operating modes:

È	Logic High

È	Logic Low

When Logic High mode is specified, the output pin is at Vdd when the pulse is asserted and at Vss when the pulse is de-asserted. Start_Angle defines the rising edge of the pulse and End_Angle defines the falling edge. The converse applies to the pulse in Logic Low mode, where Start_Angle defines the falling edge and End_Angle the rising edge. All other operations are identical in either mode.

To function correctly, PSP3 must reference the 720¡ tooth counter (COUNT_720) maintained by PMMX.

A separate 8 bit value called Spacing, is used to define the rate at which the output pulses should be rescheduled. This allows pulses to be repeated at regular angular intervals (See Figure 10).

The actual level of the output pin is stored in a single bit of parameter RAM. The bit is updated on every transition of the pulse.

Interrupts may be optionally generated on every transition.

Limitations of the Angle-Angle Function

In either Logic High or Logic Low mode, the tooth numbers for Start_Angle and End_Angle may be the same provided that Start_Angle is less than End_Angle. This means that a pulse may be placed within a single tooth period.

Start_Angle may be greater than End_Angle, provided that their tooth numbers differ.

Since the TPU updates Start_Angle and End_Angle at the end of each pulse, the CPU may only update these parameters when the function is disabled, or immediately after an interrupt from the PSP3 function.

System Requirements and Performance

The function must use TCR1 as its free-running timebase. TCR2 is unused.

An output pulse may be orthogonaly scheduled to start and end at any point within the gap of the toothed wheel. i.e. The host CPU does not need to make allowances for the gap.

The PSP3 function, in either Logic High or Logic Low mode, takes a maximum of approximately 5 µS to execute.

Two additional global parameter RAM locations (PSPTEMP1, PSPTEMP2) are used by the PSP3 functions to guarantee parameter coherency between the host CPU and the TPU. One additional global parameter RAM location (PERIOD) is used to interpolate the output pulse position.

The PSP3 function takes a maximum of approximately 5 µS to execute with a 16.78MHz system clock. The actual time taken depends on the state being executed. The following table gives the execution times for various states at 16.78MHz:

�	Function State	Output Level	Execution Time

	Initialisation	X	0.95µS

	Link from PMMX	De-asserted	9.0µS

	Link from PMMX	Asserted	8.2µS

	Start Angle Edge	Asserted	9.4µS

	End Angle Edge	De-asserted	3.9µS

��Parameter Ram Definitions for PSP3 function

CONFIG

This 9 bit value should be initialised by the CPU prior to enabling the function. It contains the channel latch controls and configures the PSC, PAC and TBS fields. For correct operation of these functions, the channel must be configured as an output, with match on TCR1 only. TCR2 is not used by this function.

Before initialisation of the Logic High mode, this parameter should normally be set to a value of $8A.

Before initialisation of the Logic Low mode, this parameter should normally be set to a value of $89.

Table 6 shows the normal options for the CONFIG parameter.

	Table 6.

	Config	Action

	$8A	Pin is output, forced low, use TCR1 timebase.

	$89	Pin is output, forced high, useTCR1 timebase.

START_ANGLE

This 16 bit value should be updated by the CPU before the function is started.

The TPU updates this parameter at the end of every output pulse.

In Logic High mode, it defines the angular position of the rising edge of the next output pulse. In Logic Low mode, it defines the angular position of the falling edge of the next output pulse.The parameter is divided into two 8 bit fields called START_TOOTH and START_RATIO.

START_TOOTH is in the most significant byte. It defines the integer part of the angular position resolved to tooth counts as specified by the tooth counter COUNT_720 only.

START_RATIO is in the least significant byte. It defines the fractional part of the angular position as a fraction of the most recently measured tooth period. The range of START_RATIO is 0 to 255/256 (i.e. 0 to 0.996).

Note: As START_ANGLE is continuously scheduled ahead of time, on every tooth transition and on every tooth filler, the rising (or falling) edge may be specified to occur coincidently with a tooth transition, or at any point within the gap.

�END_ANGLE

This 16 bit value should be updated by the CPU before the function is started.

The TPU updates this parameter at the end of every output pulse.

In Logic High mode, it defines the angular position of the falling edge of the next output pulse. In Logic Low mode, it defines the angular position of the rising edge of the next output pulse.The parameter is divided into two 8 bit fields called END_TOOTH and END_RATIO.

END_TOOTH is in the most significant byte. It defines the integer part of the angular position resolved to tooth counts as specified by the tooth counter COUNT_720 only.

END_RATIO is in the least significant byte. It defines the fractional part of the angular position as a fraction of the most recently measured tooth period. The range of END_RATIO is 0 to 255/256 (i.e. 0 to 0.996).

Note: As END_ANGLE is continuously scheduled ahead of time, on every tooth transition and on every tooth filler, the falling (or rising) edge may be specified to occur coincidently with a tooth transition, or at any point within the gap.

START_ANGLE_ACTIVE

This 16 bit value is used by the TPU only. In Logic High mode, it holds the angular position of the rising edge of the currently scheduled output pulse. In Logic Low mode, it holds the angular position of the falling edge of the currently scheduled output pulse.

The value of START_ANGLE_ACTIVE is defined in the same way as START_ANGLE.

END_ANGLE_ACTIVE

This 16 bit value is used by the TPU only. In Logic High mode, it holds the angular position of the falling edge of the currently scheduled output pulse. In Logic Low mode, it holds the angular position of the rising edge of the currently scheduled output pulse.

The value of END_ANGLE_ACTIVE is defined in the same way as END_ANGLE.

SPACING, COUNT_PTR:PIN_LEVEL

SPACING occupies the most significant byte of this parameter and is used to define the repetition rate of the output pulses. It should be updated by the CPU prior to enabling the function. It should take a value in the range of the required PMMX tooth counter, COUNT_360 or COUNT_720.

COUNT_PTR occupies bits 1 to 7 of the least significant byte. It should be updated by the CPU prior to enabling the function. It should contain the address of the tooth counter COUNT_360 or COUNT_720.

Note: An even address should be specified. When the TPU uses this parameter, bit 0 is ignored.

�PIN_LEVEL occupies bit 0 of the least significant byte. It is updated by the TPU, and may be updated by the CPU prior to enabling the function. It indicates the state of the output pin after the last output transition.

Note: PIN_LEVEL is not updated by the TPU until the first output edge occurs.

PSPTEMP1

This 16 bit parameter is used by the TPU only, to provide coherency between the START_ANGLE and END_ANGLE parameters. The parameter is used temporarily.

PSPTEMP2

This 16 bit parameter is used by the TPU only, to provide coherency between the START_ANGLE and END_ANGLE parameters. The parameter is used temporarily.

Host Interface to PSP3 function

Initialisation

1)	The CPU must write to the following parameter RAM locations while the PSP3 function is disabled:

i)	CONFIG.

	This parameter should be set to one of the values in Table 6.

ii)	START_ANGLE.

	This parameter should be set to the required rising (or falling) edge angle of the output pulse.

iii)	END_ANGLE.

	This parameter should be set to the required falling (or rising) edge angle of the output pulse.

iv)	START_ANGLE_ACTIVE.

	This parameter should be set to the same value as START_ANGLE, to avoid spurious generation of output pulses.

v)	END_ANGLE_ACTIVE.

	This parameter should be set to the same value as END_ANGLE, to avoid spurious generation of output pulses.

vi)	SPACING, COUNT_PTR:PIN_LEVEL.

	SPACING should be set to a value in the range of the reference tooth counter + 1.

	COUNT_PTR should be set to the address of the reference tooth counter.

	PIN_LEVEL may be set to 0 or 1 if desired.

2)	The CPU should set the Host Sequence bits according to the mode required. Refer to Programmers Model for details.

3)	The CPU should issue the Host Service Request %11, and then enable the channel by assigning it a middle or low priority.

�

 �

PMMX/PSP123 SPECIFICATION REV 0.3					�date \@ "MMMM"�January� �date \@ "d"�1�, �date \@ "yyyy"�1997�

					Page �			

